

Investigation of anomalous runoff response along the hundredth meridian: causes of behavior and potential amplification in a changing climate UTD Geosciences Katharine Sink PhD Candidate Advisor: Dr. Brikowski

Introduction

- MOPEX (1949 2002*)
 - Model Parameter Estimation Experiment
 - 431 stream gauge locations
- CAMELS (1981 2014*)
 - Catchment Attributes and Meteorology for Large-sample Studies
 - 671 stream gauge locations
- Variables in both datasets
 - Temperature (T)
 - Runoff (Q)
 - Precipitation (P)
 - Potential evapotranspiration (PET)
 - Actual evapotranspiration (ET) calculated using water balance
 - ET = P Q

• Anomalous \approx low runoff

Figure 1: Gauge locations for MOPEX and CAMELS datasets.¹

CAMELS (Addor et al, 2017) - <u>https://ral.ucar.edu/solutions/products/camels</u>

MOPEX (Schaake et al, 2006) - <u>https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/Documentation/</u>

^{*} Water years (October 1 – September 30)

¹⁾ Figure created in ArcMap using MOPEX and CAMELS data

Precipitation and aridity

1) PRISM https://prism.oregonstate.edu/normals/

- $2) \ \underline{NOAA\ https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals}$
- 3) CAMELS dataset (Addor et al, 2017), figure created in R

Figure 4: Aridity index (PET/P) for $1981 - 2014.^3$

Runoff efficiency and elasticity

- Runoff efficiency (coefficient, ratio)
 - Amount of precipitation that becomes runoff
 - Runoff/precipitation (Q/P)
 - Decreased efficiency (≤ 0.2)
- Runoff elasticity¹ (sensitivity), ϵ
 - + Quantifies change in Q based on change in X (i.e. P)
 - * Percent change in Q is ϵ times percent change in P
 - * If ϵ > 1.0, then change in Q is > change in P and Q is elastic (sensitive) to P
 - Highly responsive to changes in P (≥ 2)

Precipitation elasticity of streamflow,
$$\varepsilon = \frac{\partial Q/Q}{\partial P/P}$$

How sensitive runoff is to changes is in precipitation

Schaake (1990)
 CAMELS dataset (Addor et al, 2017), figures created in R

Figure 5: Runoff efficiency (Q/P) for $1981 - 2014.^2$

Figure 6: Precipitation elasticity of streamflow for 1981 - 2014.²

Budyko framework

- Budyko (1974)
 - Fraction of P that becomes ET is controlled by available water (P) and energy (PET)
 - Supply (water) and demand (energy)
 - Functional relationship between ET and two climate variables PET and P

• $\frac{\text{ET}}{\text{P}} = f\left(\frac{\text{PET}}{\text{P}}\right)$

- Evaporative index (actual ET/P)
- Aridity index (PET/P)

Budyko equation (1974)

$$\frac{ET}{P} = \left\{ \frac{PET}{P} tanh \left(\frac{PET}{P} \right)^{-1} \left(1 - exp \left(-\frac{PET}{P} \right) \right) \right\}^{0.5}$$

Anomalous basins

Figure 8: Aridity index vs evaporative index for all 671 CAMELS gauges $(1981 - 2014^1)$ Annual values plotted for 5 common gauges.

1) CAMELS dataset (Addor et al., 2017), figures created in R

Figure 11: Gauges with difference of $\geq 10\%$ from best fit in 159 gauges out of 671. 5 common gauges shown in blue¹

- Spatial distribution of all anomalous CAMELS gauges
 - All lie west of $95^{\circ}W$
- Basins in regions of decreasing P but also in the transition zone where P is remaining constant or even increasing

Figure 12: Location of CAMELS 671 gauges. Anomalous basins shown in yellow, identified from Budyko analysis.¹

Continued work

- Additional climatic variable comparisons
- Temporal evaluations
 - Seasonal, monthly, annual timescales
- Spatial evaluations
 - Land use
 - Vegetation, soil
 - Topography
 - Human aspect
- Decomposition methods to identify climate vs human impact on changes in runoff
- Identify cause(s) of decreased runoff
 - Confirm with Community Land Model

Figure 13: Satellite image of 2001 Dallas/Fort Worth, Texas. Lewisville Lake (north), Lavon Lake (northeast), Lake Ray Hubbard (east).