Geoscience mini-talks : Waveform Inversion

Student: Kai Xiong

Supervisor: David Lumley

Seismic modeling

Observed seismic data

m/s

P wave velocity model

Observed seismic data

P wave velocity model

Observed seismic data

P wave velocity model

Observed seismic data

Given the observed data, how can you estimate the model?

Initial P wave velocity model

Modeled shot gather d_{syn} based on initial P velocity model

Objective function of the optimization question

3200

2775

1925

-1500 m/s

$$J = \frac{1}{2} \sum_{sr} \int_{0}^{T} (d_{syn}(m) - d_{obs})^{2} dt (1)$$

where *s* denotes the sources, *r* denotes the receivers, d_{syn} denotes the modeled data and d_{obs} denotes the observed data.

Updated velocity

Difference(residual)

After 40th iterations ...

Difference(residual)

• Objective function of the optimization question

$$J = \frac{1}{2} \sum_{sr} \int_{0}^{T} (d_{syn}(m) - d_{obs})^{2} dt (1)$$

where *s* denotes the sources, *r* denotes the receivers, d_{syn} denotes the synthetic (modeled) data and d_{obs} denotes the observed data.

Modeled shot gather based on inverted P velocity model

Ture P wave velocity model

Observed shot gather